• config

    Sztuczna inteligencja na usługach fabryk i elektrowni

     

    Inspirowaną funkcjonowaniem ludzkiego mózgu, technologię sztucznej inteligencji cechuje wysoka moc obliczeniowa, umiejętność logicznego wykorzystania informacji i zdolność uczenia się. Przewidywana wartość rynku globalnego dla tej technologii na 2017 rok to prawie 2,5 mld USD[1]. Jak wykorzystać jej potencjał w przemyśle?

    Aż 63 proc. respondentów twierdzi, że sztuczna inteligencja pomoże zwalczyć problemy współczesnych społeczeństw – takie dane płyną z badania PwC „Boot.Me: A revolutionary partnership” z 2017 roku. Z drugiej strony, aż 46 proc. pytanych obawia się, że algorytmy SI odbiorą ludziom ich posady. Tymczasem, prace nad sztuczną inteligencją dążą do rozszerzenia ludzkich kompetencji i odciążenia człowieka od czasochłonnych, manualnych czynności.

     

    Inteligentna fabryka przewiduje awarie

    Jednym z głównych problemów wynikających z powszechnej cyfryzacji jest ilość produkowanych danych oraz ich wykorzystanie. Tymczasem Big Data stanowi duży potencjał w sektorze przemysłu. Dzięki zastosowaniu sztucznej inteligencji –  dynamiczny wzrost liczby danych może posłużyć do optymalizacji procesów zachodzących w fabrykach. W takim przypadku możliwe będzie m.in. skrócenie cykli rozwojowych produktów, zapobieganie ich technicznym wadom, a także zwiększenie bezpieczeństwa poprzez automatyzację ryzykownych działań.

    Drogą do osiągnięcia inteligencji technologicznej jest tzw. uczenie maszynowe (machine learning). Chodzi tu o metody, które pozwalają zdobywać wiedzę na  podstawie doświadczenia zawartego w danych. Nową wiedzę maszyny mogą następnie wykorzystać do wykrywania anomalii i stanów awaryjnych pracujących urządzeń.

    - Zapisane dane historyczne, służą do stworzenia samouczącego się modelu matematycznego, który przewiduje zachowanie danego urządzenia – wyjaśnia Konrad Wojdan, dyrektor działu R&D z firmy Transition Technologies. - Analizując różnice między rzeczywistym zachowaniem urządzenia a naszymi przewidywaniami co do zachowania urządzenia, jesteśmy w stanie z wyprzedzeniem przewidzieć wystąpienie awarii. Wdrożyliśmy taki algorytm w Elektrowni Rybnik dla młyna węglowego – jednego z najbardziej awaryjnych elementów systemu energetycznego. Operator pracujący w elektrowni nie ma możliwości wnikliwej obserwacji pracy wszystkich urządzeń (młyny, palniki, klapy, wtryski itp.) ze względu na ich liczebność. W momencie wykrycia przez system prowadzącego do awarii stanu pracy urządzenia, operator jest o tym informowany i może podjąć działania zaradcze, co ogranicza niepotrzebne przestoje.

     

    Biologia inspiracją dla inżynierów

    Z badania „Artificial Intelligence – the next digital frontier?”, opracowanego przez Instytut McKinsey, wynika że 67 proc. respondentów wskazuje na konieczność zastosowania sztucznej inteligencji do rozwiązywania problemów związanych z produkcją czystej energii[2]. Technologia sztucznej inteligencji będzie obecna na etapach początkowych produkcji, jak i przy działaniach związanych z konsumentami końcowymi. Uczenie maszynowe, robotyka i automatyzacja mogą pomóc firmom energetycznym lepiej przewidywać podaż i popyt, zredukować przestoje oraz zmaksymalizować wydajność[3]

    Biologiczne obserwacje mogą mieć szerokie zastosowanie przy rozwiązywaniu skomplikowanych problemów technicznych. Jednym z nurtów wykorzystujących to podejście są Sztuczne Systemy Immunologiczne (SSI).

    - Obserwując układ odpornościowy organizmów żywych, opracowaliśmy rozwiązanie SILO -  mówi Konrad Wojdan. - Jest to system informatyczny wykorzystujący metody sztucznej inteligencji, dedykowany dla sektora energetycznego. Zastosowanie algorytmów SI pozwala na ograniczenie kosztów pracy elektrowni dzięki optymalizacji procesów zachodzących w  kotle energetycznym, takich jak: utrzymywanie temperatury pary na określonym poziomie, utrzymanie emisji tlenku azotu (NOX) na zadanym poziomie, czy minimalizacja emisji CO. Z naszego rozwiązania SILO korzysta jedna ze śląskich elektrowni. Rozwiązanie pozwoliło na redukcję emisji CO2 o 4380 ton rocznie oraz na ograniczenie wydzielania szkodliwego amoniaku – o 665 ton w skali roku. Poprawiła się także sprawność kotła energetycznego, a zużycie węgla spadło o 1565 ton rocznie. W rezultacie, w skali roku elektrownia zaoszczędziła 1 120 000 złotych, a to zaledwie namiastka możliwości, jakie daje wykorzystanie sztucznej inteligencji w energetyce.

    Choć nowa technologia wciąż budzi obawy, w sztucznej inteligencji należy upatrywać potencjału, a nie zagrożenia – ludzki umysł ma być jedynie wspomagany przez niezawodne maszyny. Ten duet może znacząco odmienić oblicze funkcjonowania całej gospodarki i wpłynąć na stopień innowacyjności kraju. 

            

    Żródło: Monday PR

     

    [1] Statista, Revenues from the artificial intelligence (AI) market worldwide, from 2016 to 2025.

    [2] PwC, Boot.Me: A revolutionary partnership, 2017

    [3] McKinsey Global Institute, Artificial Intelligence – the next digital frontier?, 2017

    Oferta: automatyka magazynowa, case study, centrum logistyczne, dystrybucja, logistyka, magazyn, magazynier, operator logistyczny, palety, regały, studia przypadków, system wms, wózek widłowy, wózki widłowe

    Background Image

    Header Color

    :

    Content Color

    :